Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.846
1.
Clin Exp Pharmacol Physiol ; 51(6): e13863, 2024 Jun.
Article En | MEDLINE | ID: mdl-38650114

Chronic hyperglycaemia is a chief feature of diabetes mellitus and complicates with many systematic anomalies. Non-human primates (NHPs) are excellent for studying hyperglycaemia or diabetes and associated comorbidities, but lack behavioural observation. In the study, behavioural, brain imaging and histological analysis were performed in a case of spontaneously hyperglycaemic (HGM) Macaca fascicularis. The results were shown that the HGM monkey had persistent body weight loss, long-term hyperglycaemia, insulin resistance, dyslipidemia, but normal concentrations of insulin, C-peptide, insulin autoantibody, islet cell antibody and glutamic acid decarboxylase antibody. Importantly, an impaired working memory in a delayed response task and neurological dysfunctions were found in the HGM monkey. The tendency for atrophy in hippocampus was observed by magnetic resonance imaging. Lenticular opacification, lens fibres disruptions and vacuole formation also occurred to the HGM monkey. The data suggested that the spontaneous HGM monkey might present diabetes-like characteristics and associated neurobehavioral anomalies in this case. This study first reported cognitive deficits in a spontaneous hyperglycaemia NHPs, which might provide evidence to use macaque as a promising model for translational research in diabetes and neurological complications.


Cataract , Hyperglycemia , Macaca fascicularis , Animals , Hyperglycemia/metabolism , Cataract/pathology , Male , Cognition Disorders/etiology , Cognition Disorders/pathology , Nervous System Diseases , Hippocampus/pathology , Hippocampus/metabolism
2.
Sci Adv ; 10(17): eadl1088, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38669339

A sharp drop in lenticular glutathione (GSH) plays a pivotal role in age-related cataract (ARC) formation. Despite recognizing GSH's importance in lens defense for decades, its decline with age remains puzzling. Our recent study revealed an age-related truncation affecting the essential GSH biosynthesis enzyme, the γ-glutamylcysteine ligase catalytic subunit (GCLC), at aspartate residue 499. Intriguingly, these truncated GCLC fragments compete with full-length GCLC in forming a heterocomplex with the modifier subunit (GCLM) but exhibit markedly reduced enzymatic activity. Crucially, using an aspartate-to-glutamate mutation knock-in (D499E-KI) mouse model that blocks GCLC truncation, we observed a notable delay in ARC formation compared to WT mice: Nearly 50% of D499E-KI mice remained cataract-free versus ~20% of the WT mice at their age of 20 months. Our findings concerning age-related GCLC truncation might be the key to understanding the profound reduction in lens GSH with age. By halting GCLC truncation, we can rejuvenate lens GSH levels and considerably postpone cataract onset.


Aging , Catalytic Domain , Cataract , Glutamate-Cysteine Ligase , Glutathione , Lens, Crystalline , Cataract/pathology , Cataract/genetics , Cataract/metabolism , Animals , Glutamate-Cysteine Ligase/metabolism , Glutamate-Cysteine Ligase/genetics , Mice , Glutathione/metabolism , Lens, Crystalline/metabolism , Lens, Crystalline/pathology , Aging/metabolism , Humans , Disease Models, Animal , Mutation , Gene Knock-In Techniques
3.
BMJ Open Ophthalmol ; 9(1)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38684375

BACKGROUND: Retinal imaging, including fundus autofluorescence (FAF), strongly depends on the clearness of the optical media. Lens status is crucial since the ageing lens has both light-blocking and autofluorescence (AF) properties that distort image analysis. Here, we report both lens opacification and AF metrics and the effect on automated image quality assessment. METHODS: 227 subjects (range: 19-89 years old) received quantitative AF of the lens (LQAF), Scheimpflug, anterior chamber optical coherence tomography as well as blue/green FAF (BAF/GAF), and infrared (IR) imaging. LQAF values, the Pentacam Nucleus Staging score and the relative lens reflectivity were extracted to estimate lens opacification. Mean opinion scores of FAF and IR image quality were compiled by medical readers. A regression model for predicting image quality was developed using a convolutional neural network (CNN). Correlation analysis was conducted to assess the association of lens scores, with retinal image quality derived from human or CNN annotations. RESULTS: Retinal image quality was generally high across all imaging modalities (IR (8.25±1.99) >GAF >BAF (6.6±3.13)). CNN image quality prediction was excellent (average mean absolute error (MAE) 0.9). Predictions were comparable to human grading. Overall, LQAF showed the highest correlation with image quality grading criteria for all imaging modalities (eg, Pearson correlation±CI -0.35 (-0.50 to 0.18) for BAF/LQAF). BAF image quality was most vulnerable to an increase in lenticular metrics, while IR (-0.19 (-0.38 to 0.01)) demonstrated the highest resilience. CONCLUSION: The use of CNN-based retinal image quality assessment achieved excellent results. The study highlights the vulnerability of BAF to lenticular remodelling. These results can aid in the development of cut-off values for clinical studies, ensuring reliable data collection for the monitoring of retinal diseases.


Cataract , Tomography, Optical Coherence , Humans , Aged , Middle Aged , Adult , Aged, 80 and over , Female , Male , Tomography, Optical Coherence/methods , Young Adult , Cataract/diagnostic imaging , Cataract/pathology , Retina/diagnostic imaging , Retina/pathology , Optical Imaging/methods , Lens, Crystalline/diagnostic imaging , Lens, Crystalline/pathology , Fluorescein Angiography/methods
4.
Chem Biol Interact ; 392: 110905, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38373627

Aldose reductase is a member of the 1B1 subfamily of aldo-keto reductase gene superfamily. The action of aldose reductase (AR) has been implicated in the pathogenesis of a variety of disease states, most notably complications of diabetes mellitus including neuropathy, retinopathy, nephropathy, and cataracts. To explore for mechanistic roles for AR in disease pathogenesis, we established mutant strains produced using Crispr-Cas9 to inactivate the AKR1B3 gene in C57BL6 mice. Phenotyping AR-knock out (ARKO) strains confirmed previous reports of reduced accumulation of tissue sorbitol levels. Lens epithelial cells in ARKO mice showed markedly reduced epithelial-to-mesenchymal transition following lens extraction in a surgical model of cataract and posterior capsule opacification. A previously unreported phenotype of preputial sebaceous gland swelling was observed frequently in male ARKO mice homozygous for the mutant AKR1B3 allele. This condition, which was shown to be accompanied by infiltration of proinflammatory CD3+ lymphocytes, was not observed in WT mice or mice heterozygous for the mutant allele. Despite this condition, reproductive fitness of the ARKO strain was indistinguishable from WT mice housed under identical conditions. These studies establish the utility of a new strain of AKR1B3-null mice created to support mechanistic studies of cataract and diabetic eye disease.


Capsule Opacification , Cataract , Lens, Crystalline , Animals , Male , Mice , Aldehyde Reductase/genetics , Capsule Opacification/pathology , Cataract/genetics , Cataract/pathology , Incidence , Inflammation/pathology , Lens, Crystalline/pathology , Mice, Inbred C57BL , Mice, Knockout , Sebaceous Glands
5.
Int J Mol Sci ; 25(3)2024 Feb 05.
Article En | MEDLINE | ID: mdl-38339214

Eye lens α-crystallin has been shown to become increasingly membrane-bound with age and cataract formation; however, to our knowledge, no studies have investigated the membrane interactions of α-crystallin throughout the development of cataracts in separated cortical membrane (CM) and nuclear membrane (NM) from single human lenses. In this study, four pairs of human lenses from age-matched male and female donors and one pair of male lenses ranging in age from 64 to 73 years old (yo) were obtained to investigate the interactions of α-crystallin with the NM and CM throughout the progression of cortical cataract (CC) and nuclear cataract (NC) using the electron paramagnetic resonance spin-labeling method. Donor health history information (diabetes, smoker, hypertension, radiation treatment), sex, and race were included in the data analysis. The right eye lenses CM and NM investigated were 64 yo male (CC: 0), 68 yo male (CC: 3, NC: 2), 73 yo male (CC: 1, NC: 2), 68 yo female (CC: 3, NC: 2), and 73 yo female (CC: 1, NC: 3). Similarly, left eye lenses CM and NM investigated were 64 yo male (CC: 0), 68 yo male (CC: 3, NC: 2), 73 yo male (CC: 2, NC: 3), 68 yo female (CC: 3, NC: 2), and 73 yo female (CC: 1, NC: 3). Analysis of α-crystallin binding to male and female eye lens CM and NM revealed that the percentage of membrane surface occupied (MSO) by α-crystallin increases with increasing grade of CC and NC. The binding of α-crystallin resulted in decreased mobility, increased order, and increased hydrophobicity on the membrane surface in male and female eye lens CM and NM. CM mobility decreased with an increase in cataracts for both males and females, whereas the male lens NM mobility showed no significant change, while female lens NM showed increased mobility with an increase in cataract grade. Our data shows that a 68 yo female donor (long-term smoker, pre-diabetic, and hypertension; grade 3 CC) showed the largest MSO by α-crystallin in CM from both the left and right lens and had the most pronounced mobility changes relative to all other analyzed samples. The variation in cholesterol (Chol) content, size and amount of cholesterol bilayer domains (CBDs), and lipid composition in the CM and NM with age and cataract might result in a variation of membrane surface mobility, membrane surface hydrophobicity, and the interactions of α-crystallin at the surface of each CM and NM. These findings provide insight into the effect of decreased Chol content and the reduced size and amount of CBDs in the cataractous CM and NM with an increased binding of α-crystallin with increased CC and NC grade, which suggests that Chol and CBDs might be a key component in maintaining lens transparency.


Cataract , Hypertension , Lens, Crystalline , alpha-Crystallins , Humans , Male , Female , Middle Aged , Aged , Nuclear Envelope/metabolism , Lens, Crystalline/metabolism , Cataract/pathology , Cholesterol/metabolism , Hypertension/metabolism
6.
Life Sci Space Res (Amst) ; 40: 97-105, 2024 Feb.
Article En | MEDLINE | ID: mdl-38245354

Health effects of space radiation are a serious concern for astronauts on long-duration missions. The lens of the eye is one of the most radiosensitive tissues in the body and, therefore, ocular health risks for astronauts is a significant concern. Studies in humans and animals indicate that ionizing radiation exposure to the eye produces characteristic lens changes, termed "radiation cataract," that can affect visual function. Animal models of radiation cataractogenesis have previously utilized inbred mouse or rat strains. These studies were essential for determining morphological changes and dose-response relationships between radiation exposure and cataract. However, the relevance of these studies to human radiosensitivity is limited by the narrow phenotypic range of genetically homogeneous animal models. To model radiation cataract in genetically diverse populations, longitudinal cataract phenotyping was nested within a lifetime carcinogenesis study in male and female heterogeneous stock (HS/Npt) mice exposed to 0.4 Gy HZE ions (n = 609) or 3.0 Gy γ-rays (n = 602) and in unirradiated controls (n = 603). Cataractous change was quantified in each eye for up to 2 years using Merriam-Focht grading criteria by dilated slit lamp examination. Virtual Optomotry™ measurement of visual acuity and contrast sensitivity was utilized to assess visual function in a subgroup of mice. Prevalence and severity of posterior lens opacifications were 2.6-fold higher in HZE ion and 2.3-fold higher in γ-ray irradiated mice compared to unirradiated controls. Male mice were at greater risk for spontaneous and radiation associated cataracts. Risk for cataractogenesis was associated with family structure, demonstrating that HS/Npt mice are well-suited to evaluate genetic determinants of ocular radiosensitivity. Last, mice were extensively evaluated for cataract and tumor formation, which revealed an overlap between individual susceptibility to both cancer and cataract.


Cataract , Lens, Crystalline , Radiation Injuries , Mice , Rats , Male , Female , Humans , Animals , Cataract/etiology , Cataract/epidemiology , Cataract/pathology , Radiation Injuries/epidemiology , Lens, Crystalline/pathology , Lens, Crystalline/radiation effects , Gamma Rays/adverse effects , Ions , Dose-Response Relationship, Radiation
7.
Sci Rep ; 14(1): 403, 2024 01 03.
Article En | MEDLINE | ID: mdl-38172147

Type 2 diabetes mellitus (T2DM) and its ocular complications, such as cataract and diabetic retinopathy (DR) have been linked to circadian rhythm-disturbances. Using a unique diurnal animal model, the sand rat (Psammomys obesus) we examined the effect of circadian disruption by short photoperiod acclimation on the development of T2DM and related ocular pathologies. We experimented with 48 male sand rats. Variables were day length (short photoperiod, SP, vs. neutral photoperiod NP) and diet (standard rodent diet vs. low-energy diet). Blood glucose, the presence of cataract and retinal pathology were monitored. Histological slides were examined for lens opacity, retinal cell count and thickness. Animals under SP and fed standard rodent diet (SPSR) for 20 weeks had higher baseline blood glucose levels and lower glucose tolerance compared with animals kept under NP regardless of diet, and under SP with low energy diet (SPLE). Animals under SPSR had less cells in the outer nuclear layer, a lower total number of cells in the retina, and a thickened retina. Higher blood glucose levels correlated with lower number of cells in all cellular layers of the retina and thicker retina. Animals under SPSR had higher occurrence of cataract, and a higher degree of cataract, which correlated with higher blood glucose levels. Sand rats kept under SPSR develop cataract and retinal abnormalities indicative of DR, whereas sand rats kept under NP regardless of diet, or under SPLE, do not. These ocular abnormalities significantly correlate with hyperglycemia.


Cataract , Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Glucose Intolerance , Hyperglycemia , Animals , Male , Diabetes Mellitus, Type 2/complications , Photoperiod , Gerbillinae , Blood Glucose , Glucose Intolerance/complications , Diabetic Retinopathy/complications , Hyperglycemia/complications , Cataract/pathology
8.
Curr Eye Res ; 49(4): 391-400, 2024 Apr.
Article En | MEDLINE | ID: mdl-38095165

PURPOSE: Accumulated evidence has shown that microRNAs (miRNAs) are closely related to the pathogenesis and progression of senile cataracts. Here we investigate the effect of miR-29a-3p in cataractogenesis and determined the potential molecular mechanism involved. METHODS: In this study, we constructed a selenite cataract model in rats and obtained the miRNAs related to cataracts by whole transcriptome sequencing. To investigate the effect and mechanism of miR-29a-3p on cataracts, we performed several in vivo and in vitro experiments, including CCK8 assay, flow cytometry, luciferase reporter assay, Edu assay, and western blot analysis. RESULT: Sequencing data showed downregulation of miR-29a-3p in rats with selenite cataracts. Down-regulation of miR-29a-3p could promote lens epithelial cells (SRA01/04) proliferation and inhibit cell apoptosis, and miR-29a-3p silence could inhibit the development of cataracts. Additionally, CAND1 was a direct target gene for miR-29a-3p. CONCLUSION: These data demonstrate that miR-29a-3p inhibits apoptosis of lens epithelial cells by regulating CAND1, which may be a potential target for senile cataracts.


Cataract , MicroRNAs , Animals , Rats , Up-Regulation , Cell Proliferation , MicroRNAs/genetics , Epithelial Cells/pathology , Cataract/genetics , Cataract/pathology , Apoptosis/genetics , Selenious Acid
9.
Curr Eye Res ; 49(2): 158-167, 2024 Feb.
Article En | MEDLINE | ID: mdl-38078672

PURPOSE: High myopia is demonstrated as a pathogenic factor for nuclear cataract. The main mechanism of high-myopia cataracts (HMC) is oxidative damage, which causes mitochondrial homeostasis imbalance. This study aimed to explore the mitochondrial homeostasis alterations in lens epithelial cells (LECs) of HMC. METHODS: The lens epithelium tissues of 20 patients with HMC and 20 control subjects with age-related cataracts (ARC) were collected. The real-time quantitative PCR and western blot assays were performed for gene expressions. Immunofluorescence (IF) assays were performed for mitochondrial marker TOM20, DNA damage marker 15A3, and autophagosome marker LC3. Transmission electron microscopy (TEM) was used to observe the changes in mitochondria morphology. Mitochondrial ROS, and mitochondrial membrane potential were detected by MitoSOX fluorescence, and JC-1 MitoMP staining, respectively. Rat lenses cultured in vitro were pretreated with CCCP and H2O2 (10 and 400 µM) for 24 h. RESULTS: The copy number of mtDNA was decreased in HMC patients compared to the ARC patients. Increased mitochondrial-oriented oxidative stress response was detected in LECs of HMC compared to that of ARC. Altered expressions of mitochondrial homeostasis and mitophagy markers, including TFAM, PGC1α, MFN1, MFN2, Drp1, PINK1, Parkin and LC3, were found in HMC patients. Reciprocally, no significant differences in the expression of BNIP3 and FUNDC1 were found between HMC and ARC patients. Importantly, TEM revealed that the obvious mitochondrial fission and mitophagy phenomena occur in the LECs of HMC patients compared to the ARC patients. Moreover, CCCP aggreated the mitoROS production and depolarized mitochondrial membrane potential in the H2O2-treated human lens epithelial cells line (SRA01/04); Most important, rat lens organ culture experiments indicated a significant increase in H2O2-induced lens opacity following mitochondrial uncoupling CCCP treatment. CONCLUSION: This study has identified for the first time the abnormal mitochondrial homeostasis in HMC, and provide a new perspective on the potential mechanisms of HMC, which occurs earlier and at a higher incidence rate than ARC.


Cataract , Myopia , Humans , Rats , Animals , Carbonyl Cyanide m-Chlorophenyl Hydrazone/metabolism , Hydrogen Peroxide/metabolism , Cataract/pathology , Epithelium/metabolism , Mitochondria/metabolism , Myopia/metabolism , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism
10.
Mol Cell Biochem ; 479(4): 743-759, 2024 Apr.
Article En | MEDLINE | ID: mdl-37171723

Fibrotic cataract, including anterior subcapsular cataract (ASC) and posterior capsule opacification, always lead to visual impairment. Epithelial-mesenchymal transition (EMT) is a well-known event that causes phenotypic alterations in lens epithelial cells (LECs) during lens fibrosis. Accumulating studies have demonstrated that microRNAs are important regulators of EMT and fibrosis. However, the evidence explaining how microRNAs modulate the behavior and alter the cellular phenotypes of the lens epithelium in fibrotic cataract is insufficient. In this study, we found that hsa-let-7c-3p is downregulated in LECs in human ASC in vivo as well as in TGFß2-induced EMT in vitro, indicating that hsa-let-7c-3p may participate in modulating the profibrotic processes in the lens. We then demonstrated that overexpression of hsa-let-7c-3p markedly suppressed human LEC proliferation and migration and attenuated TGFß2-induced EMT and injury-induced ASC in a mouse model. In addition, hsa-let-7c-3p mediated lens fibrosis by directly targeting the CDH11 gene, which encodes cadherin-11 protein, an important mediator in the EMT signaling pathway. It decreased cadherin-11 protein expression at the posttranscriptional level but not at the transcriptional level by binding to a specific site in the 3-untranslated region (3'-UTR) of CDH11 mRNA. Moreover, blockade of cadherin-11 expression with a specific short hairpin RNA reversed TGFß2-induced EMT in LECs in vitro. Collectively, these data demonstrated that hsa-let-7c-3p plays a clear role in attenuating ASC development and may be a novel candidate therapeutic for halting fibrosis and maintaining vision.


Cadherins , Capsule Opacification , Cataract , Lens, Crystalline , MicroRNAs , Animals , Humans , Mice , Capsule Opacification/genetics , Capsule Opacification/metabolism , Cataract/genetics , Cataract/metabolism , Cataract/pathology , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition , Fibrosis , Lens, Crystalline/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
11.
Vet Rec ; 194(3): e3667, 2024 Feb 03.
Article En | MEDLINE | ID: mdl-38012019

BACKGROUND: The identification of ophthalmic diseases that affect vision and/or cause discomfort should be a priority in captive penguins to improve their overall health and quality of life. METHODS: A routine ophthalmological examination was performed on 80 clinically normal penguins (160 eyes), and any lesions observed were recorded. RESULTS: Ocular lesions were frequent (56% of penguins), with cataracts being the most common (48.8% of penguins). Cortical cataracts (63% of eyes) and posterior subcapsular cataracts (27.4%) were the most commonly occurring. All maturation stages were found; incipient cataracts (52.1% of eyes with cataracts) were predominant, while Morgagnian cataracts (8.2%) were the least frequent. A correlation existed between lenticular changes and increasing age. Uveitis was present in 43.8% of eyes with cataracts, and ectropion uveae was the predominant clinical sign. Other ocular findings included blepharitis (3.8% of all eyes), corneal leukoma (5.6%) and posterior lens subluxation (7.5%). LIMITATIONS: The small number of birds of some species prevented the comparison of ophthalmic findings between species. CONCLUSION: This study corroborates the high prevalence of ocular lesions in captive penguins. Cataracts were frequent and age related. Most cataracts were cortical, and the predominant maturation stage was incipient. Lens-induced uveitis was a common finding. Lowered intraocular pressure was related to cataract formation.


Cataract , Spheniscidae , Uveitis , Animals , Quality of Life , Cataract/veterinary , Cataract/pathology , Eye , Uveitis/veterinary
12.
Curr Opin Ophthalmol ; 35(1): 57-63, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37882550

PURPOSE OF REVIEW: Oxidative stress plays a central role in cataract pathogenesis, a leading cause of global blindness. This review delves into the role of oxidative stress in cataract development and key biomarkers - glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), and 4-hydroxynonenal (4-HNE) - to clarify their functions and potential applications in predictive diagnostics and therapies. RECENT FINDINGS: Antioxidants serve as pivotal markers in cataract pathogenesis. GSH affects the central lens due to factors such as enzyme depletion and altered connexin expression, impairing GSH diffusion. Age-related oxidative stress may hinder GSH transport via connexin channels or an internal microcirculation system. N-acetylcysteine, a GSH precursor, shows promise in mitigating lens opacity when applied topically. Additionally, SOD, particularly SOD1, correlates with increased cataract development and gel formulations have exhibited protective effects against posterior subscapular cataracts. Lastly, markers of lipid peroxidation, MDA and 4-HNE, have been shown to reflect disease severity. Studies suggest a potential link between 4-HNE and connexin channel modification, possibly contributing to reduced GSH levels. SUMMARY: Oxidative stress is a significant contributor to cataract development, underscoring the importance of antioxidants in diagnosis and treatment. Notably, GSH depletion, SOD decline, and lipid peroxidation markers are pivotal factors in cataract pathogenesis, offering promising avenues for both diagnosis and therapeutic intervention.


Cataract , Lens, Crystalline , Humans , Antioxidants , Oxidative Stress , Cataract/pathology , Lens, Crystalline/pathology , Glutathione/metabolism , Superoxide Dismutase/metabolism , Connexins/metabolism
13.
Curr Eye Res ; 49(5): 487-495, 2024 May.
Article En | MEDLINE | ID: mdl-38152055

BACKGROUND: Dysregulated circular RNAs (circRNAs) is involved in the pathogenesis of age-related cataract (ARC). Here, this study aimed to explore the function and mechanism of circMAP3K4 in ARC. METHODS: Human lens epithelial cells were exposed to hydrogen peroxide (H2O2) for functional experiments. qRT-PCR and western blotting analyses were used for the expression detection of genes and proteins. Cell proliferation was tested using cell counting kit-8 and EdU. Flow cytometry was applied to analyze cell apoptosis and cell cycle. The oxidative stress was evaluated by detecting the production of malondialdehyde (MDA), reactive oxygen species (ROS), and superoxide dismutase (SOD). The target relationship between miR-630 and circMAP3K4 or Excision repair cross-complementing group 6 (ERCC6) was analyzed by dual-luciferase reporter assay and RIP assay. RESULTS: CircMAP3K4 was lowly expressed in ARC patients and H2O2-induced HLECs. Functionally, forced expression of circMAP3K4 protected HLECs against H2O2-evoked proliferation inhibition, cell cycle arrest and the promotion of cell apoptosis and oxidative stress. Mechanistically, circMAP3K4 acted as a sponge for miR-630 to regulate the expression of its target ERCC6. MiR-630 was highly expressed while ERCC6 was lowly expressed in ARC patients and H2O2-induced HLECs. Up-regulation of miR-630 could reverse the protective effects of circMAP3K4 on HLECs under H2O2 treatment. In addition, inhibition of miR-630 suppressed H2O2-induced HLEC injury, which was abolished by ERCC6 silencing. CONCLUSION: Forced expression of circMAP3K4 protected HLECs against H2O2-evoked apoptotic and oxidative injury via miR-630/ERCC6 axis, suggesting that circMAP3K4 may function as a potential therapeutic target for ARC.


Cataract , Lens, Crystalline , MicroRNAs , RNA, Circular , Humans , Apoptosis , Cataract/pathology , DNA Helicases , DNA Repair Enzymes , Epithelial Cells/metabolism , Hydrogen Peroxide/toxicity , Hydrogen Peroxide/metabolism , Lens, Crystalline/metabolism , MicroRNAs/metabolism , Oxidative Stress , RNA, Circular/genetics , RNA, Circular/metabolism
14.
Int Ophthalmol ; 43(12): 4945-4958, 2023 Dec.
Article En | MEDLINE | ID: mdl-37897540

PURPOSE: To investigate the link between the capsular bend and the morphological types and characteristics of posterior capsular opacification (PCO) using anterior segment optical coherence tomography. METHODS: Thirty eyes with PCO were examined, and three types of PCO were identified: pearl, fibrosis, and mixed. We assessed anterior capsular overlap, intraocular lens-capsule adhesion, and capsular bending. In addition to measuring the intraocular lens-posterior capsule distance and capsule bending angle (CBA), the PCO parameters (area, density, and score at 6-, 5-, and 3-mm intraocular lens optic regions) were recorded. The associations between capsular bend and PCO type and characteristics were investigated. A control group of 12 eyes without PCO was used to compare the study variables. RESULTS: With p values greater than 0.001, there was a statistically significant difference in the mean PCO area and score at the 6-, 5-, and 3-mm optic zones in different PCO types, with the pearl type having the highest value, followed by the mixed type, and finally the fibrosis type. The PCO group had a significantly higher mean CBA than the control group (P = 0.001). CBA was positively related to intraocular lens-posterior capsule distance, PCO area, and PCO score at the 6-, 5-, and 3-mm zones (P = 0.001). The receiver operating characteristic curve's cut-off point for CBA was 96.85° when comparing PCO cases to controls. Partial overlap and incomplete adhesion were statistically more common in the PCO eyes than in the control (P = 0.001, 0.003, respectively). CONCLUSION: PCO types and CBA have a strong relationship with PCO score and intraocular lens-posterior capsule space. In PCO's eyes, CBA has a cut-off value of 96.85°.


Capsule Opacification , Cataract , Lens Capsule, Crystalline , Lenses, Intraocular , Phacoemulsification , Humans , Tomography, Optical Coherence/methods , Lens Implantation, Intraocular , Capsule Opacification/diagnosis , Capsule Opacification/etiology , Capsule Opacification/pathology , Lens Capsule, Crystalline/pathology , Fibrosis , Prosthesis Design , Cataract/pathology , Postoperative Complications/pathology
15.
Int J Mol Sci ; 24(15)2023 Jul 25.
Article En | MEDLINE | ID: mdl-37569253

Hereditary hyperferritinemia-cataract syndrome (HHCS) is a rare, frequently misdiagnosed, autosomal dominant disease caused by mutations in the FTL gene. It causes bilateral pediatric cataract and hyperferritinemia without iron overload. The objective of this case series, describing three Brazilian families, is to increase awareness of HHCS, as well as to discuss possible phenotypic interactions with concurrent mutations in HFE, the gene associated with autosomal recessive inheritance hereditary hemochromatosis. Whole-exome sequencing was performed in eight individuals with HHCS from three different families, as well as one unaffected member from each family for trio analysis-a total of eleven individuals. Ophthalmological and clinical genetic evaluations were conducted. The likely pathogenic variant c.-157G>A in FTL was found in all affected individuals. They presented slowly progressing bilateral cataract symptoms before the age of 14, with a phenotype of varied bilateral diffuse opacities. Hyperferritinemia was present in all affected members, varying from 971 ng/mL to 4899 ng/mL. There were two affected individuals with one concurrent pathogenic variant in HFE (c.187C>G, p.H63D), who were also the ones with the highest values of serum ferritin in our cohort. Few publications describe individuals with pathogenic mutations in both FTL and HFE genes, and further studies are needed to assess possible phenotypic interactions causing higher values of hyperferritinemia.


Cataract , Hyperferritinemia , Iron Metabolism Disorders , Humans , Brazil , Pedigree , Iron Metabolism Disorders/pathology , Cataract/pathology , Mutation
16.
Aging (Albany NY) ; 15(13): 6331-6345, 2023 07 06.
Article En | MEDLINE | ID: mdl-37414399

Cataracts are the leading cause of blindness in the world. Age is a major risk factor for cataracts, and with increasing aging, the burden of cataracts will grow, but the exact details of cataractogenesis remain unclear. A recent study showed that microRNA-34a (MIR34A) is involved in the development of cataracts, but the underlying pathogenesis remains obscure. Here, our results of microRNA target prediction showed that hexokinase 1 (HK1) is one of the genes targeted by MIR34A. Based on this finding, we focused on the function of MIR34A and HK1 in the progress of cataracts, whereby the human lens epithelial cell line SRA01/04 and mouse lens were treated with MIR34A mimics and HK1 siRNA. We found that HK1 mRNA is a direct target of MIR34A, whereby the high expression of MIR34A in the cataract lens suppresses the expression of HK1. In vitro, the upregulation of MIR34A together with the downregulation of HK1 inhibits the proliferation, induces the apoptosis of SRA01/04 cells, and accelerates the opacification of mouse lenses via the HK1/caspase 3 signaling pathway. In summary, our study demonstrates that MIR34A modulates lens epithelial cell (LEC) apoptosis and cataract development through the HK1/caspase 3 signaling pathway.


Cataract , MicroRNAs , Animals , Mice , Humans , Hexokinase/metabolism , Caspase 3/genetics , Caspase 3/metabolism , Cataract/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Apoptosis/genetics , Epithelial Cells/metabolism , Signal Transduction
17.
Brain ; 146(12): 5031-5043, 2023 12 01.
Article En | MEDLINE | ID: mdl-37517035

MED27 is a subunit of the Mediator multiprotein complex, which is involved in transcriptional regulation. Biallelic MED27 variants have recently been suggested to be responsible for an autosomal recessive neurodevelopmental disorder with spasticity, cataracts and cerebellar hypoplasia. We further delineate the clinical phenotype of MED27-related disease by characterizing the clinical and radiological features of 57 affected individuals from 30 unrelated families with biallelic MED27 variants. Using exome sequencing and extensive international genetic data sharing, 39 unpublished affected individuals from 18 independent families with biallelic missense variants in MED27 have been identified (29 females, mean age at last follow-up 17 ± 12.4 years, range 0.1-45). Follow-up and hitherto unreported clinical features were obtained from the published 12 families. Brain MRI scans from 34 cases were reviewed. MED27-related disease manifests as a broad phenotypic continuum ranging from developmental and epileptic-dyskinetic encephalopathy to variable neurodevelopmental disorder with movement abnormalities. It is characterized by mild to profound global developmental delay/intellectual disability (100%), bilateral cataracts (89%), infantile hypotonia (74%), microcephaly (62%), gait ataxia (63%), dystonia (61%), variably combined with epilepsy (50%), limb spasticity (51%), facial dysmorphism (38%) and death before reaching adulthood (16%). Brain MRI revealed cerebellar atrophy (100%), white matter volume loss (76.4%), pontine hypoplasia (47.2%) and basal ganglia atrophy with signal alterations (44.4%). Previously unreported 39 affected individuals had seven homozygous pathogenic missense MED27 variants, five of which were recurrent. An emerging genotype-phenotype correlation was observed. This study provides a comprehensive clinical-radiological description of MED27-related disease, establishes genotype-phenotype and clinical-radiological correlations and suggests a differential diagnosis with syndromes of cerebello-lental neurodegeneration and other subtypes of 'neuro-MEDopathies'.


Cataract , Epilepsy, Generalized , Epilepsy , Movement Disorders , Neurodevelopmental Disorders , Female , Humans , Infant , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Epilepsy/genetics , Cerebellum/pathology , Neurodevelopmental Disorders/genetics , Epilepsy, Generalized/pathology , Movement Disorders/diagnostic imaging , Movement Disorders/genetics , Atrophy/pathology , Cataract/genetics , Cataract/pathology , Phenotype , Mediator Complex/genetics
18.
Mol Genet Genomics ; 298(5): 1237-1244, 2023 Sep.
Article En | MEDLINE | ID: mdl-37438446

Presenile cataract is a relatively rare type of cataract, but its genetic mechanisms are currently not well understood. The precise identification of these causative genes is crucial for effective genetic counseling for patients and their families. The aim of our study was to identify the causative gene associated with presenile cataract in a Chinese family. In February 2020, a four-generation pedigree of presenile cataract patients was recruited at the 2nd Affiliated Hospital of Kunming Medical University. One patient and her healthy husband from the family underwent whole exome sequencing. The variant was validated through sanger sequencing, and co-segregation analysis was conducted in all family members to assess its pathogenicity. Molecular dynamics simulation (MDS) was used to analyze the conformation of both the wild type and pathogenic mutant loci p.Y153H of CRYBA2. We identified presenile cataract in the pedigree, which follows an autosomal-dominant pattern of inheritance. The family includes five clinically affected patients who all developed presenile cataract between the ages from 24 to 30. We confirmed the pathogenicity of a heterozygous missense variant (NM_057093:c.457T >C) in CRYBA2 within this family. The affected amino acid demonstrates high conservation across species. Subsequent sanger sequencing confirmed co-segregation of the disease in all family members. MDS analysis revealed that the p.Y153H mutant disrupted hydrogen bond formation between Y153 and R193 within the two ß-strands of the fourth Greek key domain, leading to destabilization of the ßA2-crystallin. In conclusion, a novel causative mutation (NM_057093:c.457T>C) in CRYBA2 might contribute to autosomal dominant presenile cataract.


Cataract , Mutation, Missense , beta-Crystallin A Chain , Female , Humans , Cataract/genetics , Cataract/metabolism , Cataract/pathology , DNA Mutational Analysis , East Asian People , Family , Mutation , Mutation, Missense/genetics , Pedigree , Male , Young Adult , Adult , beta-Crystallin A Chain/genetics
19.
Am J Med Genet A ; 191(9): 2398-2401, 2023 09.
Article En | MEDLINE | ID: mdl-37455568

Congenital cataract is the most common cause of lifelong visual loss in children worldwide, which has significant genotypic and phenotypic heterogeneity. The LSS gene encodes lanosterol synthase (LSS), which acts on the cholesterol biosynthesis pathway by converting (S)-2,3-oxidosqualene to lanosterol. The biallelic pathogenic variants in the LSS gene were found in congenital cataract, Alopecia-intellectual disability syndrome, hypotrichosis simplex, and mutilating palmoplantar keratoderma. In this study, we reported the first congenital nuclear cataract combined with hypotrichosis in a 12-year-old boy with biallelic LSS variants (c.1025T>G; p.I342S and c.1531_1532insT; p.L511Ffs*17) by exome sequencing. Reviewing all reported patients with LSS variants indicated that p.W629 might be a hotspot for hypospadias and p.I342S was associated with congenital cataract. Patients with one or two truncation variants tend to have multisystem symptoms compared with those with two missense variants. These findings deepen the understanding of LSS variants and contribute to the genetic counseling of affected families.


Cataract , Hypotrichosis , Male , Child , Humans , Hypotrichosis/genetics , Cataract/pathology , Alopecia/genetics , Pedigree
20.
Zhongguo Zhong Yao Za Zhi ; 48(7): 1936-1942, 2023 Apr.
Article Zh | MEDLINE | ID: mdl-37282970

Gigantol is a phenolic component of precious Chinese medicine Dendrobii Caulis, which has many pharmacological activities such as prevent tumor and diabetic cataract. This paper aimed to investigate the molecular mechanism of gigantol in transmembrane transport in human lens epithelial cells(HLECs). Immortalized HLECs were cultured in vitro and inoculated in the laser scanning confocal microscopy(LSCM) medium at 5 000 cells/mL. The fluorescence distribution and intensity of gigantol marked by fluorescence in HLECs were observed by LSCM, and the absorption and distribution of gigantol were expressed as fluorescence intensity. The transmembrane transport process of gigantol in HLECs were monitored. The effects of time, temperature, concentration, transport inhibitors, and different cell lines on the transmembrane absorption and transport of gigantol were compared. HLECs were inoculated on climbing plates of 6-well culture plates, and the ultrastructure of HLECs was detected by atomic force microscopy(AFM) during the transmembrane absorption of non-fluorescent labeled gigantol. The results showed that the transmembrane absorption of gigantol was in time and concentration-dependent manners, which was also able to specifically target HLECs. Energy and carrier transport inhibitors reduced gigantol absorption by HLECs. During transmembrane process of gigantol, the membrane surface of HLECs became rougher and presented different degrees of pits, indicating that the transmembrane transport of gigantol was achieved by active absorption of energy and carrier-mediated endocytosis.


Bibenzyls , Cataract , Lens, Crystalline , Humans , Lens, Crystalline/metabolism , Lens, Crystalline/pathology , Cataract/metabolism , Cataract/pathology , Cataract/prevention & control , Bibenzyls/chemistry , Bibenzyls/metabolism , Bibenzyls/pharmacology , Epithelial Cells , Cells, Cultured , Apoptosis
...